Planning Sudoku

Planning Sudoku for Hierarchical Domain Definition Language

15t Bruno Campos Ribeiro 2" Igor e Silva Penha 3™ Lucas Gobbi Bergholz

Faculdade do Gama
Universidade de Brasilia
Brasilia, Brasil
igor.penharol @ gmail.com

Faculdade do Gama
Universidade de Brasilia)
Brasilia, Brasil
bbrunoo@icloud.com

ABSTRACT

In this study, we tackle the intricate logic-based game:
Sudoku. The goal of Sudoku is to fill a 9x9 grid with numbers
in such a way that each row, column, and each of the nine 3x3
subgrids that compose the grid contain all of the digits from 1
to 9. Ensuring player retention and satisfaction is paramount;
thus, it is beneficial to prevent the discovery of trivial solutions
that undermine the game’s complexity intended by its creators.
Consequently, the availability of tools that can verify the
optimality of solutions is of great importance.

Sudoku is typically approached as a logic puzzle, but it
can also be framed as a planning problem. In this work, we
propose modelling Sudoku in Hierarchical Domain Definition
Language (HDDL), which is an extension of PDDL supporting
hierarchical planning. We explore how HDDL'’s structured
representation of planning problems can effectively capture
the constraints and rules of Sudoku.

Our investigation reveals that while HDDL allows for a
structured and understandable model, converting the problem
directly into a Satisfiability Problem (SAT) can yield more
efficient solving. This efficiency is largely due to the ease
of expressing the constraints of Sudoku in the language of
SAT, which facilitates the discovery of concise and optimal
solutions. In contrast, employing HDDL’s expressive power
to model such constraints does not significantly expedite the
solution process when utilizing contemporary planning tools.

I. INTRODUCTION

Introduction:

The captivating allure of Sudoku, a logic-based puzzle
game, has intrigued and engaged minds worldwide since its
inception. Originally called "Number Place”, Sudoku was
popularized in Japan in the 1980s and has since evolved into
a global phenomenon known for its simple rules yet profound
depth of logic. The essence of Sudoku lies in filling a 9x9 grid
with digits from 1 to 9 in a manner that each row, column,
and 3x3 subgrid contains all these digits without repetition.
This game, transcending mere entertainment, has emerged
as a vibrant field of academic and computational research,

Identify applicable funding agency here. If none, delete this.

Universidade de Brasilia

4™ Danilo Carvalho Antunes
Faculdade Gama
Universidade de Brasilia
Brasilia, Brasil

Faculdade Gama

Brasilia, Brasil

lucas.bergholz@gmail.com danilocarvalhoantunes @ gmail.com

particularly in the realms of logic, optimization, and problem-
solving.

Parallel to the evolution of Sudoku, the Hierarchical Domain
Definition Language (HDDL), an extension of the Planning
Domain Definition Language (PDDL), has made significant
strides. HDDL, introduced to support hierarchical planning
in complex scenarios, has expanded the horizons of compu-
tational problem-solving. It allows for a structured approach
to decomposing intricate problems into manageable sub-tasks,
fostering more efficient solution strategies. The development
of HDDL has been a testament to the progress in artificial
intelligence and computational logic, catering to the growing
need for solving complex, hierarchical problems in various
domains.

The connection between Sudoku and HDDL is not immedi-
ately apparent, yet it is profoundly symbiotic. While Sudoku
represents a paradigm of logical puzzles demanding strategic
planning and problem decomposition, HDDL offers the com-
putational framework to model and solve such problems. By
framing Sudoku as a planning problem, this study explores
the application of HDDL to Sudoku, leveraging its hierarchical
planning capabilities to model the game’s constraints and rules
systematically. This approach not only provides a fresh per-
spective on solving Sudoku but also exemplifies the versatility
and applicability of HDDL in translating a real-world logic
problem into a structured computational model.

Furthermore, this study delves into the efficiency of solving
Sudoku by directly converting it into a Satisfiability Problem
(SAT). The SAT approach benefits from the straightforward
expression of Sudoku’s constraints in its language, facilitating
the discovery of solutions that are both concise and optimal.
This comparison between HDDL and SAT in the context
of Sudoku not only illuminates the strengths and limitations
of these methodologies but also contributes to the broader
discourse on the most effective computational techniques for
problem-solving in logic-based games.

In sum, this article embarks on a journey through the
computational landscapes of Sudoku and HDDL, unraveling
the intricate connection between a beloved puzzle and an
advanced computational language. It aims to offer insights
into how traditional games like Sudoku can be transformed
through modern computational approaches, highlighting the

N

advancements in problem-solving techniques and their poten-
tial applications in various domains.

II. THE GAME

Sudoku, popular form of number game. In its simplest and
most common configuration, sudoku consists of a 9 x 9 grid
with numbers appearing in some of the squares. The object
of the puzzle is to fill the remaining squares, using all the
numbers 1-9 exactly once in each row, column, and the nine
3 x 3 subgrids

45
8 3|5 4
9 45
15 7
6 409
711109
9 2 6 4
5
2 6 3

Fig. 1. Sudoku Board Example.

SUDOKU ANSWER
5 |9 " [7] [5/1]9]6]2/3]8]4[7
8 1] [5]2 68 4(9/17[523
3| 84 1| |7.2/3|58 4|9 61
9 |7 396(/748[152
4 5 |39 471[256[398
8| [2[1 4| |8/52|1/39]67 4
HEERE 5| (96837 2(415
4l | 1117 2 4/5(861[739
1. 7] 9 8 137/495(286

shutterstock.com - 1225818238

Fig. 2. Sudoku Solved.

I1II. HDDL FORMULATION

Given the well-mapped nature of Sudoku as a problem, ob-
ject instantiations are not necessary; all objects are constants.
The considered objects fall into the following types: row and
col, both of which are sub-types of position, box and digit.

In this paradigm, the types 'row’ and ’col’ are representative
of discrete positions on the Sudoku grid, delineating subcate-
gories beneath the more encompassing type, 'position.” Con-
currently, ’box’ and ’digit’ serve as distinct types contributing
to the puzzle’s structural composition.

This methodological approach streamlines the representa-
tion of Sudoku, accentuating the immutable nature of its
constituent elements. In contrast to scenarios featuring dy-
namic objects necessitating instantiation, the static attributes
of Sudoku permit the treatment of its components as constants.

Listing 1. Sudoku Domain Definition in HDDL
(define (domain sudoku)

(:types row col — position digit box)
(:constants
dl d2 d3 d4 d5 d6 d7 d8 d9 - digit
—
b0 bl b2 b3 b4 b5 b6 b7 b8 - box
c0 cl ¢c2 ¢3 ¢4 ¢5 ¢c6 ¢7 ¢c8 - col
r0 r1 r2 r3 r4 r5 r6 r7 r8 — row)

)

’position’: Represents the general concept of a position within
the Sudoku grid.

Relationship: The ordered pair (row’ and ’col’) is a sub-
type of ’position,” emphasising the unique spatial identification
of a cell.

’row’ and ’col’ as an Ordered Pair Position: Together,
row’ and ’col’ form an ordered pair, representing a specific
position on the Sudoku grid.

Relationship: The combination of 'row’ and ’col’ acts as a
coordinated pair within the Sudoku grid, uniquely identifying
a cell’s position. This ordered pair is a sub-type of ’position,’
highlighting its role as a spatial element.

’box’: Represents the 3x3 boxes or regions in the Sudoku
grid.

Relationship: ’box’ remains a distinct type, encapsulating
the grouping of cells into non-overlapping 3x3 regions. The
ordered pair ("row’ and ’col’) and *box’ collectively contribute
to the structural composition of the puzzle.

’digit’: Represents the digits (numbers 1 to 9) used in the
Sudoku puzzle.

Relationship: ’digit’ continues to be crucial for expressing
the numerical aspect of Sudoku, representing the possible
values that can fill each cell.

From delineating the spatial coordinates of cells within
designated boxes, columns, and rows to capturing the man-
ifestation of digits and the occupied status of cells, these
predicates form integral components of the Sudoku code.
Join us as we meticulously dissect the semantics underlying
predicates such as cell-at-box, digit-at, digit-at-box, filled and
inc.

Listing 2. Sudoku Domain Definition in HDDL
(: predicates

(cell-at—-box ?b — box ?c - col ?r -
> row)

(digit—at ?d - digit ?c — col ?7r -
> TOwW)

(digit—at—box ?d - digit ?b — box)
(filled ?¢c — col 7r — row)
(inc ?a ?b - position))

N

(cell-at-box ?b - box ?c¢ - col ?r - row): This predicate
asserts the existence of a cell at the intersection of a specified
box (?b), column (?c), and row (?r). It serves to pinpoint a
precise spatial location within the Sudoku grid, contributing
to the overall structure of the puzzle.

(digit-at ?d - digit ?c - col ?r - row): The digit-at
predicate signifies the presence of a particular digit (?d) at
a specified column (?c) and row (?r). This encapsulates the
numerical aspect of Sudoku, representing the values assigned
to specific cells and forming a crucial part of the puzzle’s
logical constraints.

(digit-at-box ?d - digit ?b - box): Denoting the coexistence
of a digit (?d) within a designated box (?b), this predicate
enforces constraints related to the distribution of digits within
specific regions of the Sudoku grid. It contributes to the overall
logic governing the arrangement of numbers in the puzzle.

(filled ?c - col ?r - row): The filled predicate indicates that a
specific cell at the intersection of a given column (?c) and row
(7r) is occupied or filled. It captures the state where a cell is
no longer empty, a critical condition in Sudoku puzzle-solving
and a key element in maintaining puzzle integrity.

(inc ?a ?b - position): The inc predicate introduces an
incremental relationship between two positions (?a and 7b).
It implies a sequential or ordered connection, contributing
to the logical constraints inherent in Sudoku. This predicate
helps capture the sequential arrangement of positions within
the puzzle grid.

In the realm of Sudoku modelling, we unravel the intricacies
of tasks that form the very foundation of puzzle-solving
strategies. Within this complex terrain, tasks like ’all-check,’
*fill-cell,” *check-box,” ’check-row,” and ’check-column’ stand
out as pivotal components.

Listing 3. Sudoku Domain Definition in HDDL
(:task all-check :parameters())

(:task fill-cell :parameters
(?b — box ?¢c - col ?r — row ?d -
— digit))
(:task check—-box :parameters

(?b — box ?7d - digit))

(: task check-row :parameters
(?7r — row 7d - digit))
(:task check—column :parameters
(?c — col ?72d - digit))

(:task all-check :parameters()): The ’all-check’ task takes
a panoramic view without specific parameters, offering a
comprehensive analysis that transcends the boundaries of
individual puzzle elements. It serves as a meta-task, shedding
light on the holistic puzzle landscape.

(:task fill-cell :parameters (?b - box ?c - col ?r - row
?d - digit)): In the ’fill-cell’ task, precision meets action.
Parameterized by a box (?b), column (?c), row (?r), and digit
(7d), it encapsulates the strategic act of populating a specific
cell with a designated digit, a pivotal move in the Sudoku
solving choreography.

(:task check-box :parameters (?b - box ?d - digit)): The
"check-box’ task, with parameters specifying a box (?b) and a
digit (?d), directs our focus to a targeted examination within
a specific box. Here, we probe the presence or absence of a
particular digit, adding depth to the logical coherence of the
puzzle.

(:task check-row :parameters (?r - row ?2d - digit)): In the
"check-row’ task, a nuanced lens zooms into a designated row
(7r) and digit (?7d), meticulously scrutinizing the occurrences
of the digit along the horizontal axis. This task stands sentinel,
ensuring the harmonious alignment of digits within rows.

(:task check-column :parameters (?c - col ?d - digit)):
The ’check-column’ task, with parameters specifying a column
(?7c) and a digit (7d), engages in a detailed exploration of a
specific digit within the designated column. It plays a pivotal
role in upholding the vertical coherence of digits, a cornerstone
of Sudoku logic.

The methods play a crucial role in decomposing complex
tasks into more manageable sub-tasks, allowing for a struc-
tured and hierarchical approach to problem-solving. Here’s the
methods which were used to decomposing our tasks:

Listing 4. Sudoku Domain Definition in HDDL

(: method m-all-check

:parameters ()

:task (all-check)

:precondition (and (forall (?r -
— row ?c¢ — col) (filled ?c
= 7r))))

m-—fill-cell

:parameters (?b — box ?c¢c - col
— ?r — row ?d - digit)

:task (fill-cell ?b ?¢c ?r ?d)

:precondition (and (mnot (filled
— 2¢c ?7r)))

:ordered—-subtasks (and
— (check-box ?b ?d)

— (check-row ?r ?d)

< (check—column ?c ?d)

— (FILL-CELL ?b ?c¢ ?r 7d)))
m—check-row

:parameters (?c0 ?cl ?c2 ?7¢3 ?c4
— ?¢5 ?¢6 ?¢7 ?¢8 - col 7r -
— row 7d - digit)

:task (check-row ?r ?7d)
:precondition (and (inc ?cO ?cl)
— (inc ?c¢l ?c¢c2) (inc ?c2
— ?2¢c3) (inc ?c3 ?c4) (inc
— 2¢4 ?¢5) (inc ?c¢5 ?c¢6)
<~ (inc ?c¢6 ?c¢7) (inc ?c¢7 ?c8)

(forall (?c¢c - col) (not
— (digit—at ?d ?c
= 7r)))))
m—check—column

:parameters (?c — col ?7r0 ?rl

— ?r2 ?2r3 ?r4 ?r5 7r6 ?r7

(: method

(: method

(: method

N

— ?7r8 — row ?7d - digit) e ?2c — col: Represents the column of the cell.
:task (check—column ?c¢ ?d) e ?r — row: Represents the row of the cell.
:precondition (and (inc ?r0 ?rl) e ?2d - digit: Represents the digit to be filled in the
<~ (inc ?rl1 ?r2) (inc ?r2 cell.
< ?r3) (inc ?r3 ?r4) (inc Precondition:

— ?2r4 ?r5) (inc ?r5 ?r6)
— (inc ?r6 ?r7) (inc ?r7 ?r8)
(forall (?r - row) (not

e (cell-at-box ?b ?c ?r): Ensures that the speci-
fied cell is within the specified box.

< (digit-at 2d ?c Effect: , .
< 2r))))) e (digit-at ?d ?c ?r): Indicates that the specified
(: method m-check—box digit is now present in the specified column and row.
:parameters (?b — box ?d — digit) e (digit-at-box 2d ?b):Indicates that the specified
- task (CheCk—bOX 7D r;d) dlglt is now present in the SpeCiﬁed box.

:precondition (and (not e (filled 2c ?r): Marks the specified cell as filled.

<5 (digit-at-box ?d ?b))))

m-all-check Method

« Objective: Ensure all cells in the Sudoku grid are filled.

o Decomposition: Divides the overarching goal into sub-
goals, checking each individual cell.

o Preconditions: Validates that each cell is filled.

m-fill-cell Method

« Objective: Fill a cell at a specified position with a digit.

o Decomposition: Hierarchically decomposes the task into
checking the box, row, and column before filling the cell.

o Preconditions: Verifies that the cell is not already filled.

m-check-row and m-check-column Methods

¢ Objective: Check if a digit is valid in a row (column).

o Decomposition: Hierarchically decomposes the task into
checking each individual cell within the row (column).

o Preconditions: Validates that the digit is not present in
any other cell of the row (column).

m-check-box Method

o Objective: Validate if a digit is valid within a specific
box.
o Decomposition: Simplifies the task by focusing on a
specific box.
« Preconditions: Ensures the digit is not already present
in the box.
The actions serve as executable steps that bring about
changes in the state of the planning domain. Here’s the only
one action that were used to executable the Sudoku’s domain:

Listing 5. Sudoku Domain Definition in HDDL
(:action FILL-CELL

:parameters (?b — box ?c - col
— ?r — row ?7d - digit)

:precondition (and (cell-at-box
— ?b ?¢ ?r))

effect (and (digit—at ?d ?c 7r)
— (digit—at—box ?d ?b)
— (filled ?c¢ 7r)))

Parameters:

e ?b - box: Represents the box in which the cell is
located.

N

Listing 6. Sudoku Domain Definition in HDDL

(define (domain sudoku)

(:
(:
(:

NN AN AN SN~

requirements :hierarchy :typing :strips :universal-preconditions)

types row col — position digit box)
predicates
(cell-at—box ?b — box ?c — col ?r — row)

(digit—at ?d - digit ?c — col ?r — row)
(digit—at-box ?d — digit ?b — box)

(filled ?c - col ?7r — row)
(inc ?a ?b — position))
:constants

dl d2 d3 d4 d5 d6 d7 d8 d9 - digit
b0 bl b2 b3 b4 b5 b6 b7 b8 — box
cO0 cl ¢2 ¢3 c4 ¢5 ¢c6 ¢7 ¢c8 - col
r0 r1 r2 r3 r4 r5 r6 r7 r8 — row)

:task all-check :parameters())

:task fill-cell :parameters (?b — box ?c — col ?r — row ?7d - digit))
:task check-box :parameters (?b — box ?d — digit))

:task check-row :parameters (?r — row ?d — digit))

:task check—column :parameters (?c — col ?d - digit))

:method m-all-check

:parameters ()
:task (all-check)
:precondition (and (forall (?r — row ?c — col) (filled 7c ?7r))))

:method m-fill-cell

:parameters (?b — box ?c - col ?r — row ?d - digit)

:task (fill-cell ?b ?c¢ ?r ?d)

:precondition (and (not (filled ?c ?r)))

:ordered—-subtasks (and (check-box ?b ?d) (check-row ?r ?d) (check—column ?c¢c ?d)
— (FILL-CELL ?b ?c¢ ?r ?7d)))

:method m-check-row

:parameters (?c0 ?cl ?c2 ?7¢3 ?7c4 ?7¢5 ?7¢6 ?7¢7 7¢8 - col ?7r — row ?d - digit)
:task (check-row ?r ?d)
:precondition (and (inc ?cO ?cl) (inc ?cl ?c¢2) (inc ?c2 ?c¢3) (inc ?c¢3 ?c4) (inc
— ?7¢4 ?¢5) (inc ?c¢5 ?¢6) (inc ?c¢6 ?c¢7) (inc ?c¢7 ?c8)
(forall (?c — col) (mot (digit—at ?2d ?c 7r)))))

:method m-check—column

:parameters (?c — col ?r0 ?rl ?r2 ?r3 ?r4 ?r5 ?r6 ?r7 ?r8 — row ?d - digit)
:task (check—column ?c¢ ?7d)
:precondition (and (inc ?r0 ?rl) (inc ?rl ?r2) (inc ?r2 ?r3) (inc ?r3 ?r4) (inc
— ?r4 ?r5) (inc ?r5 ?r6) (inc ?r6 ?r7) (inc ?r7 ?71r8)
(forall (?r — row) (mot (digit—at ?d ?c ?r)))))

:method m-check-box

:parameters (?b — box ?d - digit)
:task (check-box ?b ?d)
:precondition (and (not (digit—at—box ?d ?b))))

:action FILL-CELL

:parameters (?b — box ?c - col ?r — row ?d - digit)
:precondition (and (cell-at-box ?b ?c ?r))
:effect (and (digit—at ?d ?c ?r) (digit—at—-box ?d ?b) (filled ?c ?r)))

N

IV. BENCHMARK

To choose which planners would be used to run the domain,
the International Planning Competition (IPC) 2023 was used as
a parameter, and the pandaPI and PandaDealer planners were
chosen to complete this task because of the result PandaDealer
achieved in this competition, winning three out of 6 tracks,
such as Total-Order Agile and Total-Order Satisficing.

Unfortunatly, both of the planners were not able to run
the domain. To correctly use both of them, it is necessary
to follow a few steps: first, you need to parse the code, using
the pandaPIparser. The second step is to convert this parsed
code to “’sas” language, using pandaPIgrounder. The third and
final step is to run the pandaPlengine with the sas code.

The problem with the sudoku domain happened at the
second step, in which the pandaPIgrounder could not complete
the transcription to sas language, ending in a Segmentation
Fault, with the code 201041.

V. CONCLUSIONS
REFERENCES

[1]1 D. Holler, G. Behnke, P. Bercher, S. Biundo, H. Fiorio, D. Pellier, e
R. Alford, “HDDL: An Extension to PDDL for Expressing Hierarchi-
cal Planning Problems,” 2020. [Online]. Disponivel: https://bercher.net/
publications/2020/Hoeller2020HDDL.pdf. [Acessado: 12-02-2023].

[2] R. Wilson, “Arts & Culture Sudoku number game,” 2023. [Online].
Disponivel: https://www.britannica.com/topic/sudoku. [Acessado: 12-
02-2023].

https://bercher.net/publications/2020/Hoeller2020HDDL.pdf
https://bercher.net/publications/2020/Hoeller2020HDDL.pdf
https://www.britannica.com/topic/sudoku

	Introduction
	The Game
	HDDL Formulation
	Benchmark
	Conclusions
	References

